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ABSTRACT: In this poster, we review our use of tools & 
methods such as deposition flux simulation & ray-trace 
illumination modeling as applied to an extended history of 
EUVL coating projects.  These methods offer insights into 
the successful fabrication of multilayers for all purposes, 
including analysis, specification determination, coating 
calibration and performance assessment.  In our case, they 
have played a role our history of EUVL coatings:

• 2-Optic imaging system (1999)
• >1000 Mask blanks (1999-2000)
• 360mm Condensor (2002)
• 2-Optic imaging system (2003)
• 2-Optic toroidal imaging system (2004)
• 6-Optic condensor/imaging system (2005)
• Wideband & High-Selective EUV multilayers



Facility & Metrology
• 6 Carousel Magnetron & 1 Ion-beam
• 5-Target Inline Magnetron

– Loadlock, Linear Ion source, 4 process gas
– 500x1500mm carrier /w velocity profiling
– Dual-substrate spinning: 

(450mm dia x100mm & 175mm dia x 35mm)

• Metrology:
– Grazing-incidence x-ray reflectometry

(Cu Kα, 3 instruments)
– UV Spectrophotometer: 110-550 nm

(refl & trans up to 200mm dia x 50mm thick)
– Profilometer – Curvature

(0.5 arc-sec precision)
– AFM



Reflectivity
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θ=85deg.

Wide band pass Mo/B4C structures at 12keV. Theta=1 deg.
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Imaging Systems

2-Optic Imaging System (2004)
• 200mm toroidal (R~350-600)

• 2D non-radial gradient
• Ru/B4C topcoat

(best Rp 67.1%)

• Achieve < ±1%
wavelength on
all four optics
(2 sets of 2)

variation of peak-position
0.01nm contours

6-Optic Condensor/Imaging (2005)
Tinsley/Exitech RIM

• 4 condensor (1 Ru, 3MoSi)
• 2 imaging (MoSi)

• Added Figure Error in imaging optics:
– M1: 0.015nm  (± 0.018nm λ in CA)
– M2: <0.010nm  (± 0.005nm λ in CA)



Imaging Systems

Shape Curvature Diameter CA Radii ∆λC (PV) ∆ thick (PV) ∆ thick (rms)
M1 Concave moderate 155mm  10-45mm  ±0.018nm  ±0.38nm  0.23nm  
M2 Convex moderate 78mm  3-12mm  ±0.005nm  ±0.10nm  0.04nm  
C1 Concave moderate 42mm  0-16mm  ±0.013nm  ±0.26nm  0.20nm  
C2 Convex very curved 18mm  3-7mm  ±0.022nm  ±0.45nm  0.37nm  
C3 Concave flat 25mm  0-6mm  ±0.004nm  ±0.10nm  0.08nm  
C4 Flat -n/a- 40mm  0-18mm  -n/a- ±0.30nm  -n/a-
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Average of all 28 measurements:  134.999Å
Peak-to-Valley Range across diameter:  1.15Å
RMS Deviation from Target: ±0.33Å
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Deposition Simulation
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Deposition Simulation
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Ray-Tracing
ML impact to system illumination

• Source has spectrum IO(λ)
• Multiple beams (N) exit from each position, xS, 

on the source
• Each position of the source illuminates the 

entire width of the reticle/detector image; it 
images a subset of positions, xM, across the 
clear-aperture on each optic (M optics).

• The variation of the reflectivity spectra, R(λ), on 
each optic is known.  Functionalize the variation 
in peak wavelength with position (∆λP vs x)

• Each ray has a different angle-of-incidence, g, 
on each optic.  This value is different from the 
measurement angle, gm, of the multilayer.  The 
peak is shifted ∆λg from the gm to g.

• The source spectrum and the optic reflectivity 
spectra are multiplied and integrated in the 
bandwidth for each beam.  The multiple N 
beams arriving at each reticle/detector position 
are then summed.
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• How does illumination vary across 
reticle/detector?

• How does I(x) change from assumption of 
perfect coatings (identical & perfect uniform 
R(λ)) with actual measured spectra?

• Is there an effect of the actual source spectrum 
Io(λ) from some idealized constant value?

• What are individual effects of ∆λ & ∆Rp
variations in the ML coatings?

• What are the relative contributions to I(x) of each 
optic?

• With known expectations or prior results of 
coatings, can you make tradeoffs in total 
illumination (Iavg) vs illumination variation (∆I) by 
changing the targeted specifications of individual 
optic-coatings?
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CD-SAXs Camera
line-edge roughness
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